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We continue the study of the sine-Gordon soliton model, performing stochastic molecular dynamics 
computer simulations for a wide range of both temperatures and coupling constants. We find three general 
regimes of behaviour: the continuum limit or non-interacting regime; the pinned or transition-state-theory 
(TST) limit, where soliton-phonon interactions are important; and the general non-continuum regime, 
where soliton--soliton interactions of 'multiple soliton effects' are important. In the non-continuum regime, 
the correlation function changes as a function of temperature and coupling constant. We expect that this will 
lead to deviations from the continuum limit temperature scaling and soliton energy scaling observed in the 
dynamics of sine-Gordon systems. 

(Keywords: sine-Gordon soliton model; computer simulation; transition state theory; continuous limits; dielectric relaxation; 
polyethylene) 

INTRODUCTION 

Recently we studied the sine-Gordon soliton as a model 
for dielectric relaxation in polyethylene and similar 
polymers 1 -4. In this model the soliton consists of a freely 
propagating 180 ° twist of the chain axis (with a stretch of 
half a lattice unit). In the presence of an alternating 
electric field, the soliton moves up and down the chain in 
Brownian motion, rotating dilute perpendicular dipoles 
in the process. 

Initially we concentrated primarily on continuum limit 
simulations of the chain at constant temperaturC and the 
continuum limit theoretical treatment 1'3'4 (in ref. 1). We 
investigated the time derivative of the dielectric decay 
function C(t) (the dipole-dipole correlation function in 
the case of dilute dipoles) and found diffusive behaviour 
with characteristic power law of exponent -1 /2 .  The 
simulations were in excellent agreement with the theory at 
large coupling constants ((C/A) 112 > 2.9) and moderate 
temperature (T~ = 3.06). 

As the coupling constant was decreased we found 
increasing deviation from this result 2, and several models 
were examined as potential explanations. The hopping 
diffusion model of the soliton I gave continuum limit 
results, and a model of the soliton as a 'relativistic' (with 
respect to the speed of sound in the crystal) particle 
moving in an effective periodic potential of the lattice (in 
ref. 2) gave qualitatively similar results. Both these models 
assumed that the solitons were non-interacting, so it was 
concluded 2 that soliton interactions with other solitons 
('multiple soliton effects') must be responsible. 

In this paper we extend the originaP sine-Gordon 
soliton simulations to lower coupling constants and 
different temperatures to investigate this non-continuum 
behaviour. In the next section, we review the soliton 
model and simulation technique. Then we discuss the 
non-continuum results as a function of temperature and 
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coupling constant. Finally we summarize and give 
conclusions. In the following paper we apply these results 
to the temperature dependence of the crystalline (~t) 
dielectric relaxation in polyethylene. 

SOLITON MODEL AND SIMULATION 

Skinner and Wolynes 3'4 first considered the sine-Gordon 
soliton model for this problem, which is described by the 
Hamiltonian: 

H = ~[A(1 - cos 20i) +½C(O,- 0,+ ,2 +±1021 lJ 2 ij  (1) 
i 

as a one-dimensional problem in 0i, the angle of rotation 
of the chain axis from zero at the ith site (two CH2 units 
comprising a site). Here A is the magnitude of the 
(intermolecular) crystal-field potential, and C is the 
magnitude of the (intramolecular) Hooke's law potential. 
A represents the correction into crystal register of the half- 
a-lattice-unit stretch, and C represents effective bond- 
length and valence-angle distortions. The quantity 
(C/A) 1/2 is the characteristic coupling constant of the 
problem. 

If the soliton is viewed as a particle (neglecting its 
length), we can compute the time correlation function as 
the product of two step functions (the two-state 
approximation): 

C(t) = ([2H(0k(0))-- 1][2H(Ok(t))- 1]) (2) 

where k = (N + 1)/2 is the centre site on a chain of N sites, 
and H is the step function: 

H(0)={~ -r~/2<~0<n/2 
n/2 ~< 0 ~< 3~r/2 (3) 

which essentially counts soliton passes. Then the 
derivative of the correlation function can be written as 
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Figure 1 Typical plot oflog[(~(t)] vs. log_t (for C/A) 1/z =0.8, TR=2.0 
simulation results, t >  1). The slope is f l - 1 ,  where the power-law 
exponent /~=0.172 

(omitting the factor of 4): 

C(t) = (Ok(O)6(Tr/2-- Ok(O))H(Ok(t))) (4) 

Notice the delta function at the initial position, which 
allows us to start the simulation in a one-soliton 
transition state, a chain equilibrated with the centre site k 
fixed at n/2, and the sites at i<  k near 0 and the sites at 
i > k near n. It is this rapidly varying correlation-function 
derivative that is measured by the simulation. 

The simulation ~ is a stochastic molecular dynamics 
simulation of one chain, the neighbouring chains being 
represented by the crystal-field potential. As in 
conventional molecular dynamics, the equations of 
motion are integrated, via the Verlet algorithm s. The 
stochastic part involves the BGK collision model 6. The 
collisions are chosen from a Poisson distribution of 
collision times: 

P( t )=e -=' (5) 

where = is the BGK collision frequency (1/Zc), which 
increases as the square root of the temperature. The 
angular velocity at each site is randomized after each 
collision by selection from a Boltzmann distribution. We 
used reduced units of A for energy and temperature (kBT), 
I for moment of inertia, and ~o o = (A/I) t/2 for time and 
frequency. T h e  results are the average of 10000 
trajectories. (Further details of the simulation method can 
be found in ref. 1.) 

Forty simulations were done (out to t =  10) at different 
coupling constants and temperatures. (A typical 
simulation took about an hour of CPU time on a Cyber 
205 supercomputer.) Power-law behaviour of the 
correlation-function derivative was found at long times in 
all but a few cases (where the correlation function was 
essentially constant), so log-log plots of the correlation- 
function derivative vs. time were linear (see Figure 1). A 
least-squares fit of the slope ~ - 1) yielded a power-law 
exponent/~# 0.5 outside the continuum limit regime, and 
/~ varied as a function of temperature and coupling 
constant. (Only t > 1 points were fitted.) In addition, best 
non-linear least-squares fits of the continuum limit 
correlation-function derivativC (normalized, with a one- 
soliton initial condition): 

1 1 - - e  -~t  

C ( t ) = , f 2  (~,t- 1 + e-~') '/2 (6) 

to the simulation as a function of 7 were also done, even 
outside the continuum limit where the fit was not good, 
defining V as a general measure of damping. Strictly 
speaking, V is only well defined as a fitted parameter in the 
continuum limit where (6) holds and where it is defined as 
the (effective) phenomenological friction constant for 
soliton motion (the damping constant divided by the 
effective soliton mass in the Fokker-Planck derivation). 
However, as a crude measure it turns out to be quite 
useful quantitatively as well as qualitatively in discussing 
the general non-continuum behaviour as well (see below). 

NON-CONTINUUM BEHAVIOUR 

General features 
In general, the sine-Gordon model correlation- 

function derivative showed three regimes of behaviour. 
Continuum limit behaviour, where (6) was fitted within 
the error bounds discussed in ref. 1, and a constant 
power-law exponent of /~=0.5 independent of both 
coupling constant and temperature was found, held for all 
temperatures and coupling constants (C/A)1/2~ 1 such 
that flEK ~> 4, where EK is defined as the continuum limit 
soliton energy 4 ( C / A )  1/2 ([3 = 1/kBT) for the purposes of 
delineating regimes (see below)). (In other words, 
(C/A)1/2>~ Te in the continuum limit cases.) Notice that 
temperature as well as coupling constant determines 
continuum limit behaviour (see Table 1). This is probably 
because, in agreement with our theoretical studies t -a ,  
soliton interactions determine the regimes, and they are a 
function of flEK through the soliton density. When 
(C/A)1/2<~1 and flEK>~4, the correlation-function 
derivatives showed a constant plateau value at long times 
(see Figure 2 and Table 2), which we shall discuss below as 
transition-state-theory f iST)  or pinned limit behaviour, 
demonstrating discreteness effects as discussed in ref. 2. 
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Table 1 Results of nine continuum limit simulation cases 

(C/A) 1/2 Tit [3EK ~° 

1.0 0.4 10.0 0.663 0.50 
1.0 1.0 4.0 0.472 1.00 
2.0 0.2 40.0 0.624 0.97 
2.0 0.4 20.0 0.509 1.73 
2.0 0.8 10.0 0.437 2.63 
2.0 1.0 8.0 0.538 2.85 
2.0 1.6 5.0 0.570 3.07 
2.0 2.0 4.0 0.493 4.62 

10.0 8.0 5.0 0.633 35.4 

= Theoretical value if= 0.5 

A 

1.0: 

0.9 

0.8 

0.7 

0.6 

O0 

00000000000000000000000000000000 

0 I / . ~  I I 
0 10.0 20 ~.0 90.0 100.0 

Figure 2 Typical transition-state-theory case behaviour, for 
(C/A)t/2=0.5 and TR=0.2, shown out to t=lO0 in a special long 
simulation 

decreases  wi th  increasing t empera tu re  in the non-  
con t inuum regime. As expected,  t r ans i t ion-s ta te - theory  
cases have unit  sol i ton lengths ((C/A) 1/2< 1). Discrete  
soli ton energy E~'  was calculated as the difference between 
the (equi l ibrated)  one-sol i ton  t rans i t ion-s ta te  and  
g round-s ta te  mean  energies as in ref. 1, and  is shown in 
Figure 3. F o r  values of  (C/A)1/2>~ 2, ~ '  a p p r o a c h e d  the 
l imit ing behav iour  (in reduced units):  

~K ~ ~ 3.76(C/A) 1/2 -- 3.04 (7) 

(linear in (C/A)I/2). As expected,  a s  (C/A)I/2----~O, ~s---*l 
and  the discrete sol i ton energy becomes the same as the 
barr ier  height A in the independent-wells  (low-coupling) 
limit.  W e  shall  now discuss non -con t inuum (followed by 
t rans i t ion-s ta te - theory)  behav iou r  in more  detai l .  

Temperature dependence 

It  was found  tha t  the  power- law e xpone n t / 3  decreases 
with increasing t empera tu re  l inearly in the log of  
t empera tu re  for all coupl ing  cons tan ts  in the non-  
con t inuum regime accord ing  to:  

/if= ( -  0.31 ___ 0.05) In(Ta/T~) (8) 

where  Tp is a funct ion of the coupl ing  cons tan t  (C/A_) 1/2 
and  is p lo t ted  be low in Figure 8a. A mas te r  p lot  of  fl vs. 
log t empera tu re  for three coupl ing-cons tan t  values is 

Table 2 Results of seven transition-state-theory simulation cases 

(C/A) 1/2 T R fiE K Plateau values y 

0.20 0.2 4.0 0.723 + 0.007 0.15 
0.25 0.2 5.0 0.693 + 0.008 0.18 
0.50 0.1 20.0 0.688 _ 0.006 0.17 
0.50 0.2 10.0 0.655 + 0.003 = 0.19 
0.50 0.4 5.0 0.604 + 0.005 0.28 
1.0 0.2 20.0 0.631 _ 0.006 0.25 

=A plateau value from t= 100 version (more accurate); 0.688 was 
obtained in t= 10 version, and used in plot in Figure 9 for consistency 
with other points 

Table 3 Results of 24 general non-continuum simulation cases 

(C/A) 1/2 T R flEK fl  

These two regimes show essential ly non- in te rac t ing  0.0001 2.00 0.002 0.629 0.74 
soli tons.  0.001 4.00 0.001 0.413 1.57 

0.10 2.00 0.20 0.606 0.74 
In  the remain ing  genera l  non -con t i nuum regime 0.20 2.00 0.40 0.562 0.80 

( t i E r < 4 ) ,  so l i ton in terac t ions  are  i m p o r t a n t  and  the 0.33 2.00 0.67 0.457 0.93 
power- law exponent  is a funct ion of  bo th  coupl ing 0.50 0.60 3.33 0.765 0.34 
cons tan t  ( through in terac t ions  of  sol i tons wi th  phonons)  0.50 0.80 2.50 0.640 0.56 

0.50 1.00 2.00 0.619 0.55 
and  t empera tu re  ( through in terac t ions  of  sol i tons with 0.50 1.25 1.60 0.552 0.68 
o ther  soli tons).  The  results  of  these s imula t ions  are  shown 0.50 1.50 1.33 0.390 0.92 
in Table 3 and  are  discussed in detai l  below. T h e r a n g e  of  0.50 2.00 1.00 0.327 1.15 
exponents  observed  here was roughly  - 0.5 < f l  < 1.0 at  0.67 2.00 1.33 0.199 1.49 
the t empera tu res  we invest igated.  ( G o o d  higher-  0.80 2.00 1.60 0.172 1.70 

- 1.00 2.00 2.00 0.213 2.10 
t empera tu re  da ta ,  which would  p roduce  lower fl values,  1.00 3.06 1.31 -0.016 3.27 
were difficult to  ob t a in  because  of  noise in those  1.00 8.00 0.50 -0.177 7.50 
s imulat ions .  An ind ica t ion  of  the  typical  e r ror  bars  o n / ~  1.25 2.00 2.50 0.178 2.95 
can  be ob ta ined  by  compar ing  the values in Table 1 with 1.50 2.00 3.00 0.305 3.48 

1.75 2.00 3.50 0.394 4.04 
the theore t ica l  value  fl = 0.5. Typica l  ~ value  er ror  bars  are  2.00 3.06 2.61 0.337 6.50 
also a con t inuum limit phenomenon ,  as in ref. 1.) 2.00 4.00 2.00 0.326 8.80 

In  add i t ion ,  sol i ton length was observed  and  discrete 2.00 10.0 0.80 0.076 19.2 
sol i ton energy was calcula ted.  Sol i ton  length is 2.00 40.0 0.20 - 0.306 68.2 
independen t  of  t empera tu re  in the con t inuum limit,  but  10.0 20.0 2.00 -0.063 462 
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Figure 4 Master plot of power-law exponent flvs. log(T~T~) for non- 
continuum regime simulations with (C/A) 1/2 =0.5 (A), 1.0 (©) and 2.0 
([~). The slope is -0.31 _+0.05 

shown in Figure 4. This means that the time correlation 
function changes with temperature in the non-continuum 
regime, and is a result of soliton-soliton interactions. 

Continuum solitons do not change shape or speed 
upon collision with other solitons. But non-continuum 
solitons interact, in that two solitons repel each other, a 
soliton and an antisoliton (a soliton with asymptotic 
positions reversed) attract and then annihilate and re- 
create each other, and phonons may create soliton 
pairs 7 -9. We observed in ref. 2 than an increasing barrier 
height causes the correlation-function derivative to drop 
off less rapidly. Thus the decrease in the power-law 
exponent fl and the increase in soliton density with 
increasing temperature could be interpreted as other 
solitons acting as 'effective barriers' to soliton 
propagation. 

A master plot of the log of the damping constant 7 vs. 
the log of the temperature for three coupling-constant 
values is shown in Figure 5. In all regimes (not restricted 
to non-continuum cases) the behaviour is linear 
according to the equation: 

In ), = (0.91 _+ 0.10) ln(TR/T~) (9) 

where T~ is a function of the coupling c o n s t a n t  (C /A)  1/2 
and is plotted below in Figure 8b for the non-continuum 
regime. This means that the damping constant increases 
with increasing temperature according to the power law: 

~)~ 7 O'91+0"10 (10) 

(Errors bars in ~, are quite large ~ in the continuum regime, 
but decrease with coupling constant.) 

A weak power-law dependence of the damping 
constant on temperature is also predicted through the 
Einstein relation D = 1/flm*y (where m* is the effective 
soliton mass) for the diffusion constant D for continuum 
limit double-well soliton theories in the literature. 
Specifically, Wada and Ishiuchi 1° derive D ~ T 2 for sine- 
Gordon solitons; Wada and Schrieffer 11 derive D ~  T 2 
for (k 4 solitons, giving 7 ~ T-1 (decreasing weakly with 
increasing temperature); and Sahni and Mazenko 12 
derive D ~ T ~/2 for sine-Gordon solitons, giving y ,-~ T 1/2, 
increasing weakly with increasing temperature. The latter 
behaviour is most similar to our result, probably because 
multisoliton configurations were considered in that 
calculation. Notice that the BGK collision frequency c( 
also increases with the square root of the temperature, 
and gives a molecular interpretation to at least some of 
the damping. 

Coupling-constant dependence 
A plot of the damping constant ~ vs. the coupling 

constant for TR = 2.0 is shown in Figure 6. The damping 
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F i g u r e  5 Master plot of log damping constant (log 7) vs. log(TR/T~) for 
non-continuum regime simulations with coupling constants 
(C/A) 1/2 =0.5 (A), 1.0 (©) and 2.0 (rq). The slope is 0.91 _+0.10 
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Figure 6 Plot of damping constant  y vs. coupling constant (C/A) 1/2 for 
TR = 2.0. The slope at larger coupling-constant values is 2.25 

constant increases with coupling constant, linearly with 
slope 2.25 above (C/A)1/2~0.5, and levels off to a 
constant (which depends on the temperature) as the 
coupling constant goes to zero. Notice that the behaviour 
is qualitatively similar to that of the discrete soliton 
energy vs. coupling constant (see Figure 3). This agrees 
with the fact that the calculation of the diffusion constant 
for continuum limit sine-Gordon solitons of Wada and 
ishiuchi t 0 predicts that y should be proportional to ~ s  in 
that limit. 

The qualitative behaviour of 7 with (C/A) ~/2 is also 
similar to that of the soliton length vs. coupling constant 
(see ref. 1 and also above). Soliton length is constant at 
one unit below (C/A)~/2~0.5, and proportional to 
(C/A) t/2 at higher (C/A) 1/2 values. It makes sense that ~ is 
probably proportional to soliton length because 
'phenomenological friction' should depend on the size of 
a long object being approximated as a particle (finite size 
effects). If the soliton really were a 'particle' of constant 
size, this would not be true, and 7 might be proportional 
to the BGK collision frequency o~ and independent of 
(C/A) t/2. 

The behaviour of the power-law exponent /~ with 
coupling constant is interesting because it reflects the 
competing effects of damping and the effective barriers to 
soliton propagation caused by discreteness effects in the 
non-continuum regime, a result of soliton-phonon 
coupling. This behaviour is shown in Figure 7 for TR = 2.0. 
As the coupling constant goes to zero it levels off to a 
temperature-dependent constant, and at continuum limit 
values it is constant at 0.5 for all temperatures. In the non- 
continuum regime in the example at TR = 2.0, for (C/A) 1/2 
between about 0.15 and 0.67, fl decreases linearly with 
(C/A) t/2 with a slope of about -0 .40;  between 0.67 and 
1.25,/~ is about constant at 0.20; and between 1.25 and 
2.0, /ff increases linearly with (C/A) 1/2 with a Slope of 
about +0.75. 

This behaviour can be understood from the 7 vs. 
(C/A)~/2 behaviour described above and by examining the 
effective periodic potential magnitude o~2fr of discreteness 
effects determined by Currie et al. ~ and shown in our 

reduced units in ref. 2. Briefly, ~o2~ is constant at 4.0 for 
(C/A) ~/2< 1, and drops rapidly to zero as the coupling 
constant increases to about 2.8. It can now be seen that in 
the region where/~decreases with (C/A) 1/2, the damping y 
is increasing with (C/A) 1/2 and c0~r is fixed, and since (from 
ref. 2) increased damping causes a less rapid drop in the 
correlation-function derivative, the net effect is that of 
increasing damping causing decreasing ff in this lowest 
part of the non-continuum regime. At higher values of 
(C/A) ~/2 in the non-continuum regime, this effect 
competes with a decreasing effective discreteness barrier 
height co 2, which would tend to increase/~ (cause a more 
rapid drop in the correlation-function derivative), and/ff 
remains roughly constant. As (C/A) ~/2 increases further, 
this effect dominates the damping, and /~ does indeed 
increase with (C/A) ~/2 until it reaches the continuum limit 
value of 0.5. 

Thus the lowest part of the /~ vs. (C/A) 1/2 non- 
continuum regime is dominated by damping, the highest 

2 due to part is dominated by effective barriers COorf 
discreteness effects, and the region in between involves 
approximate cancellation of these two competing effects. 
(From ref. 2 we see that /~ would also increase from 
increasing relativity as (C/A) ~/2---*0, but this would not be 
expected to be a significant effect here, because the 
thermal root-mean-square reduced velocity V/Co, where Co 
is the soliton maximum velocity, does not get above 0.55 
or 0.60 in most applications.) In this way the /~ vs. 
(C/A) ~/2 curve reflects phonon-soliton interactions, also 
a non-continuum phenomenon. 

Finally, it should be noticed that the non-continuum 
regime is completely characterized quantitatively as well 
as qualitatively by the simulations done here. Combining 
(8) and (9), we can relate ~ and ~ at the same temperature 
a s :  

/~= ( -  0.34 + 0.07) ln(TR) (11) 

where R = TffT a is also a function of (C/_A) 1/2 as shown in 
Figure 8c. Using measured values of/~ and 7 from the 
simulations, and equations (8), (9) and (11), Ta, T~ and R 
as functions of (C/A) 1/2 are given in Table 4 and plotted as 
smooth functions suitable for interpolation in Figure 8. 
Thus/~ and 7 can be calculated for any non-continuum 
coupling constant and temperature. 
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Figure 7 Plot of power-law exponent/~ vs. coupling constant  (C/A) t/2 
for TR= 2.0 (see text for slopes) 
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Figure 8 Parameters for the complete quantitative characterization of 
the non-cont inuum regime, as a function of coupling constant  (C/A) ~/2: 
(a) Ta vs. (C/A) ~/2, (b) T~ vs. (C/A) ~/2 and (e) R =  Tr/T~ vs. (C/A) 1/2 

Pinned /TST  limit 
As we noted above, when flEK > 4 and (C/A) 1/2< 1, the 

correlation-function derivative is constant at long times 
and we have pinned or transition-state-theory (TST) limit 
behaviour (see Fioure 2). (C/A)1/2~ 1 is the borderline 
coupling-constant value, showing continuum limit 

behaviour for TR=0.4 (flEK= 10.0) and transition-state- 
theory behaviour for TR = 0.2 (flE~: = 20.0). 

The trajectories observed for the 0~ at different i 
illustrate the TST behaviour. For i < (N + I)/2, the 0~ start 
near zero in the left well of the crystal-field potential and 
stay oscillating around the well bottom. For i > (N + 1)/2, 
the 0~ start and stay oscillating near n in the fight well 
bottom. For the centre site i=  ( N +  1)/2, 0i starts at the 
barrier top and rapidly drops into the left or right well and 
stays there. This centre site behaviour is what one would 
expect for an isolated transition-state-theory 'reaction'; 
such behaviour is not surprisingly the result of a non- 
interacting soliton with very low coupling ( C ~ A )  
between neighbouring 0i. (The off-diagonal correlation 
functions, iv~j, are zero in the TST simulation cases.) 
When flEK < 4, however, TR is too high and the damping 
(interaction with surrounding polymer chains or the 
physical environment) is too high for TST behaviour and 
the usual non-continuum limit behaviour results. 

In comparing with transition-state theory, the plateau 
value is the ratio of the true activated event rate constant 
k to the transition-state-theory rate constant kxsT. k/krsr is 
plotted as a function of the damping constant 7 in Figure 
9. It shows linear behaviour which fits the formula: 

k/kxsT ~ - 0.927 + 0.861 (12) 

in the cases we studied. Notice that the decrease in plateau 
value k/kasr is in qualitative agreement with the (non- 
linear) results of Skinner and Wolynes 13-15 and Hynes ~ 6 
for the case of single barrier crossing. 

The non-continuum effect observed in this regime is 
soliton-phonon coupling, with consequent damping and 
pinning. Physically, the soliton 'radiates phonons'  and 
decreases in velocity until it is 'pinned' in a particular site 
(i) well 7. For this to happen it has to have both a low 
enough coupling constant for there to be discreteness 
barriers 092ff to soliton propagation and also a low enough 
temperature to be below the pinning velocity fl~, = v/c o. 
Currie et al. 7 estimate: 

flpin ~" (1('02) 1/2 (C/A)  1/2 < 1 (13) 

(in our units). Since here ¢0~,~4 according to their 
calculations 7, flp=~½. In our units: 

[]pin : I/(flEK) 1/2 (14) 

so V/Co<flpin is equivalent to f lEK>4, which is the 

Table 4 Non-cont inuum parameters T~, T r and R as functions of 
(C/A) ~/2 calculated from simulation data 

(C/A) ~/2 T~ T,~ g 

0.001 15.2 0.887 0.075 
0.10 14.1 0.887 0.081 
0.20 12.3 0.830 0.086 
0.33 8.74 0.720 0.103 
0.50 5.74 0.565 0.121 
0.67 3.80 0.389 0.126 
0.80 3.48 0.309 0.110 
1.00 3.98 0.199 0.066 
1.25 3.55 0.078 0.031 
1.50 5.35 0.044 0.013 
1.75 7.13 0.024 0.006 
2.00 9.81 0.012 0.002 
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Plateau values k/kTsT as a function of damping constant ~, in Figure 9 
the TST/pinned limit simulation cases (t = 10 plateau values are used) 

condition we found for TST/pinned limit behaviour. Thus 
we have quantitative agreement with Currie et al. on the 
region of pinned limit behaviour in s ine-Gordon soliton 
systems. 

C O N C L U S I O N  

As we have seen, there are basically three regimes of sine- 
Gordon soliton behaviour, based on the nature and 
extent of interactions in the system. The non-interacting 
regime is the continuum limit, characterized by tiEr, > 4 
and coupling constants greater than 1. Soli ton-phonon 
interactions are important if the coupling constant is < 1, 
and soliton-soliton interactions are important if flEK < 4. 

This tE~  cutofffor continuum limit behaviour has been 
seen in theoretical calculations and verified by 
experiments on different s ine-Gordon soliton-related 
systems. Takayama and Sato 17 compared transfer 
integral calculations with numerical results and found 
that ideal soliton gas phenomenology, which is based on 
continuum limit and non-interacting soliton approxi- 
mations, breaks down below about  t E K  < 5. Nuclear 
spin-lattice relaxation time studies t8 of the one- 
dimensional (1D) ferromagnet CsNiF 3 show agreement 
with a continuum limit model for t E K  > 2.6, and similar 
experiments 19 on the 1D antiferromagnet T M M C  show 
agreement with continuum coherent models in the 
absence of impurities and continuum incoherent models 
in the presence of impurities for t E K  > 2.5. 

In addition, the experiments on the quas i - lD 
magnetic systems (the best-characterized sine- 
Gordon soliton systems to date) demonstrate rather 

generally that dynamic properties scale with temperature 
and continuum soliton energy (coupling constant) in the 
continuum limit. The continuum soliton energy EK in the 
1D antiferromagnet T M M C  is proportional  to the 
magnetic field H, and in the 1D ferromagnet CsNiF 3 it is 
proportional to the square root of H. The spin-lattice 
relaxation time T 1 scales in H and T for CsNiF a (ref. 18) 
and for T M M C  both with and without impurities 19. The 
electron spin resonance linewidths is and neutron 
scattering intensities 2° also scale in H and T for CsNiFa. 
Below the cutoff of t iEr ~ 2.6 a plot of In(T/T 1) vs. H 1/2/T 
shows deviations from linearity due to non-continuum 
effects ~8 for CsNiF a. 

In ref. 1 we predicted that in the continuum limit the 
one-soliton relaxation time z o scales in temperature: 

z o ' 16r/2 (15) 

tm*rc,~ ~ 

(where r/o is the soliton density, a function offlEK, and m* 
is the effective soliton mass), such that Cole-Cole plots of 
the frequency-dependent dielectric constant e*(og) in 
polyethylene should be independent of temperature 
(scale) in the continuum limit. We have seen in this paper 
that the time correlation function changes with 
temperature outside the continuum limit. In the following 
paper we shall show how this applies to experimental 
dielectric relaxation results for polyethylene. 
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